EVObsession logo

Connect with us

Hi, what are you looking for?

100% Electric Vehicles

EV & Autonomous Driving Technologies Will Inevitably Merge, Lux Research Writes

google-autonomous-self-driving-carThere are big changes coming to the automotive industry over the next couple of decades. In particular, electric vehicle and autonomous driving (self-driving car) technologies are set to shake things up — possibly even resulting in the disappearance of some of the world’s major manufacturers.

Interestingly, there are actually quite a lot of potential synergies between the two technology suites.

Lux Research recently published an interesting article on the subject, detailing 6 primary reasons why the two technologies will “inevitably merge.”

Here’s a condensed, excerpted version of that:

  • Technology-focused early adopters want both innovations in the same car: Automotive innovations are expensive, and they come to premium cars first. Tesla’s $100,000 EVs exemplify this premium well, but the same applies to driving assist features too, which in more advanced forms add thousands of dollars to the price of a car. The type of early adopters that can afford such price premiums often seek out technological differentiation as their reward – which means they want the OEM to include both electric and self-driving features in the same car, like in the new Mercedes-Benz S Class (client registration required). As these innovations eventually trickle down and become more affordable, the initial pairing demanded by early adopters will carry on through to the mass market, as well.
  • It is easier to implement autonomous features on EVs: Between their multitude of sensors and advanced computing hardware and software, self-driving cars require more from a car’s electrical subsystem. Today, ICE engines still largely use 12 V electrical systems, running off a single lead-acid battery; the higher voltages and energy stored in an EV battery pack allows much more design freedom when it comes to self-driving hardware and software implementations. It is also simpler to control an electric motor and battery pack than an internal combustion engine, with its thousands of moving parts and complex cabling (for example, “drive by wire” technology is a more natural fit for EVs). Indeed, in their prototyping of autonomous features, General Motors, Nissan, and Google have each opted to use EVs as their starting platform (client registration required). None of this is to say that ICE-based cars are impossible to make self-driving; the engineering is just somewhat simpler when using an EV.
  • Wireless charging integrates seamlessly with autonomy: A self-driving car will have a hard time filling itself with gasoline. It would either require its driver to do it, or a gas station attendant to do it, or a robot (see Fuelmatics and Rotec Engineering). Wireless charging, which is now coming to market for some plug-ins from Audi, Toyota, and others, does away with this issue (client registration required). An autonomous car can drive to an open parking spot, align itself properly, and self-charge using wireless charging. Better yet, it can move itself when done, allowing for a higher utilization rate of charging infrastructure (while EVs that are not self-driving would be stuck there until their owners moved them). Wireless charging is also more efficient as a function of alignment – and self-driving cars will be able to park themselves optimally, every time, to ensure the highest possible wireless charging efficiency. Finally, it enables “opportunistic charging”: Rather than waiting until the battery pack is nearly empty, a vehicle can charge itself when it is between driving duties.
  • More efficient self-driving extends range, which is an EV pain point: All developers of EVs still struggle with range anxiety, and any technology that can extend driving range will be welcomed. Early studies indicate that self-driving technology may improve driving efficiency by 5% to 10%, thanks to smoother braking and acceleration, as well as more logical coasting and regenerative braking thanks to advanced mapping and predictive algorithms (client registration required). For EVs, extending driving range by 5% to 10% using autonomy will be a welcome side benefit. More tests remain to be done to quantify the exact bump, but the promise is there. Once it arrives, OEMs could use it to allow cars to drive longer distances (lower range anxiety for same price), or to make cars cheaper (same range anxiety, but smaller battery pack lead to a lower price point).
  • Both technologies will mature at around the same time: Despite Tesla’s high profile, EVs are still not popular, barely making up about 1% of new car sales worldwide. Likewise, despite Google’s showy prototypes, fully self-driving cars are a distant promise. However, both are steadily progressing: Year by year, batteries get less expensive, helping EVs sell better. Year by year, sensors and software improves, allowing driver assist features to improve in their sophistication, making steady progress towards full autonomy. By our estimate, it will be around 2030 that both technologies will mature – that is, when plug-ins will become the mainstream drivetrain type, and when full autonomy will be achieved (client registration required for both). That happy coincidence will allow the two innovations to enter into a virtuous cycle, with each benefiting the other.
  • Both technologies will become mandated by governments: As EVs become more affordable and more mainstream, the idea of governments allowing OEMs to sell ICE-powered cars will be seen as increasingly irresponsible. Indeed, a number of governments around the world are already debating about when to ban the sale of ICE-powered cars. That will not happen for a while, but the time will come when the ICE will be regulated out of existence. Similarly, once driver assist features conclusively prove that they are much safer than human drivers, governments will mandate that they become standard equipment, just like they did with airbags, anti-lock brakes, electronic stability control, and other innovations. Essentially, the end game for why self-driving cars will be EVs will be because governments around the world will force OEMs, by law, to implement both technologies. That could be from an outright ban, or a subtler policy shift that makes ICE vehicles become economically unviable, because of higher taxes, penalties, or added-cost components.

There are many good points there. Something else to note: both of the technologies stand to eat into the sales and profits of the current auto giants, meaning that startups and outsiders are likely to embrace the technologies in earnest earlier than the entrenched interests, and likely both of them together rather than just one.

Written By

James Ayre's background is predominantly in geopolitics and history, but he has an obsessive interest in pretty much everything. After an early life spent in the Imperial Free City of Dortmund, James followed the river Ruhr to Cofbuokheim, where he attended the University of Astnide. And where he also briefly considered entering the coal mining business. He currently writes for a living, on a broad variety of subjects, ranging from science, to politics, to military history, to renewable energy. You can follow his work on Google+.


Free electric vehicle news daily


You May Also Like

100% Electric Vehicles

After a steep drop from the Tesla Model S, the BMW i3 is the most expensive electric car on the US market (just slightly...

100% Electric Vehicles

This article is also being published on EV Obsession and EV Sales. The Chinese market had more than 34,000 new EVs zooming the streets last...

100% Electric Vehicles

Electric car cost vs gas car cost is a perennial issue of discussion. Of course, the result keeps changing, and the options for comparison...

100% Electric Vehicles

An interesting new interactive infographic detailing the Tesla Model S was recently brought to my attention, and seems very much worth sharing here. The...